Complex Multi-factorial pathophysiological Processes in sickle cell disease: Recent Therapeutic Advances

Shaker A. Mousa, PhD, MBA, FACC, FACB
Professor of Pharmacology, Vice Provost, Executive VP & Chairman
Complex Pathophysiology in SCD

- Sickling
- CVD, VTE, Stroke, PAH,
Pathophysiology of SCD

1. Molecular
2. Cellular
3. Vascular
4. Biochemical
5. Clinical
Molecular pathology of SCD
Normal versus sickle beta globin

Normal

\[\beta^A \]

1 2 3 4 5 6 7 8 9 10 146

Sickle

\[\beta^S \]

1 2 3 4 5 6 7 8 9 10 146

glu

val
Pathophysiology of SCD

1. Molecular
2. Cellular
3. Vascular
4. Biochemical
5. Clinical
Pathophysiology of SCD: Cellular
Pathophysiology of SCD

In a red blood cell containing mostly Hb S...

When oxygenated...

...single Hb S molecules in solution; allows red cell to be soft, and round

When deoxygenated

- O₂

+ O₂

Hb S molecules polymerize into long fibers; mishapen, dehydrated and adherent sickle cells.
Pathophysiology of SCD

1. Molecular
2. Cellular
3. Vascular
4. Biochemical
5. Clinical
Pathophysiology of SCD: Cellular
SCD Pathogenesis
Cellular Adhesion to ECs

Pathophysiology of SCD

1. Molecular
2. Cellular
3. Vascular
4. Biochemical
5. Clinical
<table>
<thead>
<tr>
<th>Pathogenesis Factor</th>
<th>Effect on Biomarkers in SCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal Adhesion To Vascular Endothelium</td>
<td>↑ VCAM</td>
</tr>
<tr>
<td></td>
<td>↑ ICAM</td>
</tr>
<tr>
<td></td>
<td>↑ L-selectin</td>
</tr>
<tr>
<td></td>
<td>↑ P-selectin</td>
</tr>
<tr>
<td>Inflammation</td>
<td>↑ TNF-α</td>
</tr>
<tr>
<td></td>
<td>↑ IL-1β</td>
</tr>
<tr>
<td></td>
<td>↑ IL-6,</td>
</tr>
<tr>
<td></td>
<td>↑ IL-8,</td>
</tr>
<tr>
<td></td>
<td>↑ MCP-1</td>
</tr>
<tr>
<td></td>
<td>↑ MIP-α</td>
</tr>
<tr>
<td></td>
<td>↑ IFN-γ</td>
</tr>
<tr>
<td>Hemolysis, Reperfusion Injury and Nitric Oxide</td>
<td>↑ Soluble L-selectin</td>
</tr>
<tr>
<td></td>
<td>↓ NO</td>
</tr>
<tr>
<td>Hypercoagulation</td>
<td>↑ D-dimer</td>
</tr>
<tr>
<td></td>
<td>↑ Soluble P-selectin</td>
</tr>
</tbody>
</table>
Pathophysiology of SCD

Consequences of Hb S polymerization RBC sickling

- Red cell injury and Hemolysis
- Adhesion of RBC to endothelium
- Formation of hetero-cellular aggregate
- Propagation of vaso-occlusion in adjacent vasculature
- Deficits in vasodilator mediators (NO)
- Increased inflammation
- Hyper-coagulation (VTE), complement activation, …
Pathophysiology of SCD

1. Molecular
2. Cellular
3. Vascular
3. Biochemical
5. Clinical
1. Anemia

2. Vaso-occlusion

3. Chronic organ damage
The goal is to relieve the pain; prevent infections, organ damage, strokes and control complications.

Pain medicine: acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs), and narcotics such as morphine, oxycodone, and etc.

- Heating pads

- Hydroxyurea, Folic Acid, L-Glutamic
Pharmacotherapy of SCD
Hb F Induction

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mode of action</th>
<th>Human trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyurea</td>
<td>Stress erythropoiesis; selection of F-cells</td>
<td>Phase 3, successful</td>
</tr>
<tr>
<td>Short chain fatty acids</td>
<td>Histone deacetylase inhibitor; reactivation of γ-gene expression</td>
<td>Promising in small studies; high doses required; variable responses</td>
</tr>
<tr>
<td>(Butyric Acid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decytabine</td>
<td>Cytosine analog; DNA methyltransferase inhibitor</td>
<td>Promising in small pilots</td>
</tr>
</tbody>
</table>
Pharmacotherapy of SCD
Nitric oxide donors/regulators

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mode of action</th>
<th>Human trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Improve micro-vascular blood flow</td>
<td>Shortens duration of pain</td>
</tr>
<tr>
<td>Arginine</td>
<td>NO synthase substrate</td>
<td>Reduce PA systolic pressure</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>Phosphodiesterase-5 inhibitor</td>
<td>May help in pulmonary hypertension and priapism</td>
</tr>
</tbody>
</table>

Oral L-Glutamine

Oral Voxelotor (previously called GBT440) Phase 2/3

Hematopoietic stem cell transplantation and Gene Therapy
Pharmacotherapy of SCD
Anti-adhesion agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mode of action</th>
<th>Human trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>RheothRx</td>
<td>Improve micro-vascular blood flow</td>
<td>Phase 3, reduced duration of pain episode, analgesic use</td>
</tr>
<tr>
<td>Anti-Selectins</td>
<td>Improve micro-vascular blood flow</td>
<td>Preclinical, Phase 1/2</td>
</tr>
<tr>
<td>LMWH</td>
<td>Multiple Mode of actions</td>
<td>Double blind Randomized Multicenter (Qari et al: Thrombosis Hemostasis 2007)</td>
</tr>
</tbody>
</table>

Several other Strategies are under exploration in preclinical and Clinical investigations include the followings: r-Thrombomodulin, L-Glutamine, Thiol containing compounds, 5-hydroxymethyl 2 furfural (5-HMF), a breakdown product from glucose, Endothelin antagonists, weaker LMWH, Sulfated Non-Anticoagulant LMWH (S-NACH)
LMWH - Sevuparin – Weaker Anticoagulant

Sevuparin

IV Infusion

Intact pentasaccharide sequence
Role of Ultra-Heparin Derivatives in the Management of Sickle Cell Disease

S-NACH
A. Unfractionated heparin:

\[n = 20 - 35, \, R_1 = H \text{ or } SO_3^-, \, R_2 = H \text{ or } Ac \text{ or } SO_3^-, \, R_3 = H \text{ or } Na^+ \]

B. Tinzaparin:

\[n = 4 - 10, \, R_1 = H \text{ or } SO_3^-, \, R_2 = H \text{ or } Ac \text{ or } SO_3^-, \, R_3 = H \text{ or } Na^+ \]

C. NAC heparin:

\[R_1 = H \text{ or } SO_3^-, \, R_2 = H \text{ or } Ac \text{ or } SO_3^-, \, R_3 = H \text{ or } Na^+ \]

Figure 1. Chemical structure. Molecular structure of: (A), unfractionated heparin; (B), Tinzaparin; and (C), NAC heparin.
Structure Differences Between S-NACH and Enoxaparin

<table>
<thead>
<tr>
<th>Differences</th>
<th>S-NACH</th>
<th>Enoxaparin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average M. Wt.</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>4,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions < 2000 Da</td>
<td>≤ 20%</td>
<td>≤ 20%</td>
</tr>
<tr>
<td>2,000-6,000 Da</td>
<td>60-70%</td>
<td>≤ 60%</td>
</tr>
<tr>
<td>> 6,000-8,000 Da</td>
<td>≤ 10%</td>
<td>≤ 15%</td>
</tr>
<tr>
<td>Sulfate/Carboxylate</td>
<td>2.5-3.5/1</td>
<td>1.5-1.8/1</td>
</tr>
</tbody>
</table>
Multiple Pathways Targeted by UFH/LMWH and S-NACH

UFH/LMWH
Plasmatic + vascular activity

S-NACH
Vascular affinity
Complex Pathophysiology in SCD

- Sickling
- CVD, VTE, Stroke, PAH,
SNACH Restores Normal Round Shape to sickled RBCs from Sickle Cell Patient under hypoxia

Human blood drawn from Sickle Cell patients, incubated with and w/o S-NACH

- S-NACH 24 hr. incubation at 37 C, 1-10 µg/ml
 Essentially 100% of cells returned to normal round shape

- Control 24 Hour incubation at 37 C
Anti-Sickling Efficacy of SNACH in Blood from Sickle Cell Subject

Percentage of sickle cell (80.3 %)

Percentage of sickle cell (1.5 %)
Anti-Sickling Efficacy of SNACH in Blood from Sickle Cell Subject

P < 0.001
Anti-Sickling Efficacy of SNACH in Blood from Sickle Cell Subject

Patient 5
Incubation at 25 C

PBS

- Red arrow = Sickled cell
- Green arrow = Normal cell
- Percentage of sickle cell (80.3 %)

SNACH

- Red arrow = Sickled cell
- Green arrow = Normal cell
- Percentage of sickle cell (1.5 %)
Average of sickle cells in the all 12 patients

Sickling decreased by 80%
Could Nanotechnology Enable us to convert Injectable LMWH / S-NACH into an Oral Dosage form?

\[
m = 1 \text{ to } 25, \quad R = H \text{ or } \text{SO}_3\text{Na}, \quad R1 = H, \text{SO}_3\text{Na} \text{ or } \text{COCH}_3, \quad R2 = H \text{ and } R3 = \text{COONa} \text{ or } R2 = \text{COONa} \text{ and } R3 = H, \quad \text{and } \text{N-}(\text{3Dimethylaminopropyl})' -\text{N'-ethylcarbodiimide hydrochloride} = \text{EDC}
\]
Oral Bioavailability of Nano-LMWH versus LMWH
SNACH: Mechanism – Sickle Cell

• Anti-Sickling
• Nanoformulated with Maximal Oral Bioavailability
• Prevents cellular adhesions
 • Inhibits P, L, S selections - prevents deformed blood cells from attaching to blood vessel walls and causing VOC and painful crisis
• Mitigates vascular occlusions
 • Induction of endothelium-dependent relaxation mediated by nitric oxide
 • Local Anti-thrombotic effect via inhibition of TF
• Vascular specificity
 • Sulfation Increased affinity for vascular endothelium
Acknowledgements

PRI, Albany College of Pharmacy & Health Sci.
Laura O’Connor
Seema Mohamed
Dr. Dhruba Bharali
Dr. Huadong Cui
Dr. Weikun Li
Dr. Murat Yalcin
Dr. Pat Phillips
Dr. Shaymaa Mousa
Dr. Sudha Thangirala
Dr. Kelly Keating
Dr. Nour Darwish
Majde Takieddin
Laura Stellato

Albany Medical Center:
Dr. Nepo

King Abdel Aziz University:
Prof. Qari
Amna Barnawi